PROFESSIONAL DEVELOPMENT #### INTRODUCTION - Target learners: 6th grade to middle school - Objectives: - Develop integrated curricula in collaboration with middle school STEM teachers on Al - Emphasize the importance of visualization and representation with computers - Emphasize how computers perceive and learn from data - Provide opportunities for students to apply Al concepts to real-world applications and consider the ethical implications of Al - Two curriculum designs: Al for good and Al for me. #### THINGS TO PREPARE BEFORE YOU TEACH - Knowledge and skills - Al - Machine Learning - Natural language processing - Computer vision - Materials - Scratch extension - Teachable machine - Micro Bit #### AI FOR GOOD #### Objectives - Explain what Al is and how it works. - Describe how AI (ML, NLP, Computer vision) can help our society. - Design an Al prototype to solve a daily problem. #### 5 lessons - Lesson 1. Al & Machine Learning I - Lesson 2. Machine Learning II - Lesson 3. Natural Language Processing - Lesson 4. Computer Vision - Lesson 5. Project Design #### AI FOR ME #### Objectives - Explain what Al is and how it works. - Describe how AI (ML, NLP, Computer vision) can solve problems. - Design an Al prototype to address school community's needs. #### • 5 lessons - Lesson 1. Al & Natural language processing - Lesson 2. Machine Learning I - Lesson 3. Machine Learning II - Lesson 4. Computer Vision - Lesson 5. Shark Tank # AIVS. NOT AI ## **TOASTER** #### SIRI ON IPHONE ### BARCODE SCANNER #### SMART CAR #### WASHING MACHINE **NETFLIX** # INDUSTRIAL ROBOT #### DELIVERY ROBOT #### MIXER #### TIKTOK FACEFILTER #### ELECTRONIC TOLL COLLECTION # WHAT IS AI? WHAT DOES AI STAND FOR? #### WHAT IS ARTIFICIAL? - Made by humans; produced by human (opposed to natural) - Example: Artificial flowers #### WHAT IS INTELLIGENCE? An organism uses data to improve decision making #### WHAT IS AI? - A way for a computer program to work "intelligently" - The art of teaching computers how to "think." - A discipline concerned with the designing of computers that make predictions and decisions. #### AI INCLUDES MANY CONCEPTS - Machine Learning - Natural language processing - Computer vision • ... And many more. # **EXAMPLE ACTIVITIES** MACHINE LEARNING NATURAL LANGUAGE PROCESSING **COMPUTER VISION** # 1. MACHINE LEARNING #### WHAT IS MACHINE LEARNING? - Machine Learning (ML) is a process when Al learns for itself through data and experience - Enable Al systems to come up with their own solutions - Complete certain tasks at great speed and scale - When you think of ML, who or what do you think of? #### WHAT IS SUPERVISED ML? #### WHAT IS UNSUPERVISED ML? #### SUPERVISED AI EXAMPLE CODE.ORG - AI FOR OCEANS #### AI FOR OCEANS - Al for Oceans - How can we help protect the oceans using ML? #### AI FOR OCEANS #### AI FOR OCEANS - How do Al know what a "fish" may look like? - Why did we need to label and distinguish different objects in "Al for Oceans" activity (e.g., "fish" versus "not fish")? How do you call this step? - How important this step was for machine learning? # 2. NATURAL LANGUAGE PROCESSING #### WHAT IS NATURAL LANGUAGE PROCESSING (NLP)? • NLP is the branch of Al that helps computers detect, understand, interpret, and manipulate human language in ways that are context aware. #### HOW DOES NLP WORK? - Different forms of analysis based on... - O Data (example: words) - O Structures (example: grammar) - Meaning - What does it mean? - "It's only 68 degrees in here" #### HOW DOES NLP WORK? - Language is Data. - Word association - the relationship between sentences, words or signs and their meaning #### TRY TO BUILD YOUR WORD ASSOCIATION MAP - Talk about your target word and the different meanings - After you receive your word, begin building your word association map - Make a cluster: - Draw lines to link words together if they are related - Border your clusters: - When you are finished, draw a shape around clusters that are not related to other clusters #### HOW DOES NLP WORK? - Each cluster has a boundary - Each boundary has been defined by us - Boundaries can change. But...how? - Context (restaurant versus school cafeteria) - Location (school versus home) - Culture (Korea versus US) - Trends (1990 versus 2023) - Audience (middle schooler versus old timer) [Fun fact: this is how algorithms are made!] #### HOW DOES NLP WORK? [some] techniques to train a model - O Cluster analysis - Keyword extraction - Sentiment analysis ## [some] uses of the models we trained - Make Word Predictions to Gene rate Text Responses (ChatGPT; autocomplete) - Determine Meanings of Text (lan guage translation) # HOW DOES AUTOCOMPLETE WORK ON DIFFERENT USERS? #### how to make how to make money how to make friends how to make water run uphill how to make a decision how to make a questionnaire how to make our ideas clear how to make telehealth app how to make strategic alliances work how to make soap how to make a good presentation Q how to make A how to make - Google Search A how to make kelly green A how to make a paper airplane A how to make kelly green icing A how to make money A how to make kelly green frosting A how to make how to make french toast Q how to make a paper airplane A how to make buttermilk A how to make slime how to make money fast A how to make money online how to make deviled eggs #### WHAT'S THE ALGORITHM PAYING ATTENTION TO? - Google profile - Social media activity - Recent searches - Search history - Location / zip code - Date / time - Other immediate searches in your proximity - Browser cookies - Other....? ## 2. COMPUTER VISION #### WHAT IS COMPUTER VISION (CV)? - It is used to know what an image contains. - The goal of CV is to understand the content of digital images by extracting useful/ meaningful information from the image. ## WHAT IS USEFUL/MEANINGFUL DATA? CV might be used to classify, identify, verify, detect, and/or recognize objects in an image. #### UNDERSTANDING IMAGES IS NOT TRIVIAL - Images contain a lot of data! - The problem for computers is that data is not easily transformed into something they can understand. Computers don't see colors and shapes. #### THE PROBLEM OF UNDERSTANDING IMAGES To address the problem of a computer extracting meaningful information from an image, the problem was decomposed into smaller more manageable problems: - Pixel/Color Identification - Edge Detection - Shape Detection ## PIXEL/COLOR IDENTIFICATION What would happen if computers could look at pictures? - Russell Kirsch ## EXPLORE THE PIXEL ACTIVITY PROGRAM | R
G
B | 9
54
106 | R
G
B | 82
110
156 | R
G
B | 40
50
54 | R
G
B | 9
11
24 | R
G
B | 36
51
53 | R
G
B | 65
81
74 | R
G
B | 27
34
39 | RGB | 47
82
140 | R
G
B | 181
196
230 | RGB | 215
222
226 | | 109
118
97 | R
G
B | 9
12
13 | R
G
B | 4
15
28 | |-------------|-------------------|-------------|------------------|-------------|-------------------|-------------|-------------------|-------------|----------------|-------------|-------------------|-------------|----------------|-------|-------------------|-------------|-------------------|-------------|-------------------|-----|------------------|-------------|------------------|-------------|-------------------| | R
G
B | 22
42
25 | RGB | 6
30
80 | | 109
143
203 | 2 G B | 188
198
224 | RGB | 163 | 民の田 | | RGB | | RUB | 10
24
18 | RGB | 6
13
27 | RGB | 8
26
47 | | 28
58
106 | | | | 54
62
63 | | G | 143
164
172 | R G 89 | 186 | | 92
95
74 | RGB | 2
8
28 | R
G
B | 18
45
87 | | 83
116
151 | | | RGB | 25
18
22 | R
G
B | 7
22
35 | RGB | 0
14
34 | RGB | 14
35
47 | RGB | 12
23
38 | | 25
63
119 | | R
G
B | 66
80
109 | R
G
B | 21
14
16 | | 38
52
58 | | | R
G
B | | RGB | 5
27
67 | | | M U B | 187
206
229 | R (6) III | 176
202
192 | RGB | 21
25
11 | RGB | 0
13
20 | RGB | 14
6
28 | R
G
B | 22
11
29 | | R
G
B | 24
46
82 | | 53
66
104 | | | R
G
B | 15
21
22 | | 12
10
13 | R
G
B | 50
58
49 | | | RGB | 0
11
27 | R
G
B | 0
32
62 | | 32
67
105 | | | R
G
B | 16
21
20 | R
G
B | 25
30
42 | | | | RGB | 4
9
15 | R
G
B | 0
22
44 | RGB | 20
53
83 | | | R
G
B | 9
22
30 | R
G
B | 13
18
30 | RGB | 18
24
42 | RGB | 2
20
35 | RGB | 29
41
54 | | 27
63
114 | | 75
114
164 | | 157
166
189 | | R
G
B | 17
24
33 | | | RGB | 41
35
34 | RGB | 1
15
16 | | 0
40
81 | | 105
135
182 | | | | | RGB | | RGB | | RGB | 0
20
36 | R G B | | | 38
50
70 | | | | R
G
B | 33
42
37 | R G B | | RGB | 29
39
45 | | 49
59
43 | RGB | 4
17
23 | RGB | 17
38
63 | | | | 52
58
63 | RGB | | RGB | 2
31
43 | RGB | 20
58
94 | | | | R
G
B | 23
52
80 | | | | | R G B | 22
23
25 | R
G
B | 22
18
33 | RGB | | RGB | 14
34
53 | R G B | 10
20
33 | | | R
G
B | 72
95
112 | RGB | 24
40
36 | R
G
B | 0
15
25 | R
G
B | | #### EDGE DETECTION - UNPLUGGED - Here are the pixel values for a gray-scale image. - What do you think is in the image? ### EDGE DETECTION - UNPLUGGED A Star #### SHAPE DETECTION – WHAT DO YOU SEE? #### EDGE DETECTION TO SHAPE DETECTION **Google Quick Draw** #### DISCUSSION QUESTIONS - How can we connect CS with Al? - Do you think that collecting more data always leads to better decisions? Why or why not? - How can poor quality data affect Al? - How can we ensure that the data we collect is accurate and reliable?