

PROFESSIONAL DEVELOPMENT

INTRODUCTION

- Target learners: 6th grade to middle school
- Objectives:
 - Develop integrated curricula in collaboration with middle school STEM teachers on Al
 - Emphasize the importance of visualization and representation with computers
 - Emphasize how computers perceive and learn from data
 - Provide opportunities for students to apply Al concepts to real-world applications and consider the ethical implications of Al
- Two curriculum designs: Al for good and Al for me.

THINGS TO PREPARE BEFORE YOU TEACH

- Knowledge and skills
 - Al
 - Machine Learning
 - Natural language processing
 - Computer vision
- Materials
 - Scratch extension
 - Teachable machine
 - Micro Bit

AI FOR GOOD

Objectives

- Explain what Al is and how it works.
- Describe how AI (ML, NLP, Computer vision) can help our society.
- Design an Al prototype to solve a daily problem.

5 lessons

- Lesson 1. Al & Machine Learning I
- Lesson 2. Machine Learning II
- Lesson 3. Natural Language Processing
- Lesson 4. Computer Vision
- Lesson 5. Project Design

AI FOR ME

Objectives

- Explain what Al is and how it works.
- Describe how AI (ML, NLP, Computer vision) can solve problems.
- Design an Al prototype to address school community's needs.

• 5 lessons

- Lesson 1. Al & Natural language processing
- Lesson 2. Machine Learning I
- Lesson 3. Machine Learning II
- Lesson 4. Computer Vision
- Lesson 5. Shark Tank

AIVS. NOT AI

TOASTER

SIRI ON IPHONE

BARCODE SCANNER

SMART CAR

WASHING MACHINE

NETFLIX

INDUSTRIAL ROBOT

DELIVERY ROBOT

MIXER

TIKTOK FACEFILTER

ELECTRONIC TOLL COLLECTION

WHAT IS AI? WHAT DOES AI STAND FOR?

WHAT IS ARTIFICIAL?

- Made by humans; produced by human (opposed to natural)
- Example: Artificial flowers

WHAT IS INTELLIGENCE?

An organism uses data to improve decision making

WHAT IS AI?

- A way for a computer program to work "intelligently"
- The art of teaching computers how to "think."
- A discipline concerned with the designing of computers that make predictions and decisions.

AI INCLUDES MANY CONCEPTS

- Machine Learning
- Natural language processing
- Computer vision

• ... And many more.

EXAMPLE ACTIVITIES

MACHINE LEARNING

NATURAL LANGUAGE PROCESSING

COMPUTER VISION

1. MACHINE LEARNING

WHAT IS MACHINE LEARNING?

- Machine Learning (ML) is a process when Al learns for itself through data and experience
- Enable Al systems to come up with their own solutions
- Complete certain tasks at great speed and scale
- When you think of ML, who or what do you think of?

WHAT IS SUPERVISED ML?

WHAT IS UNSUPERVISED ML?

SUPERVISED AI EXAMPLE

CODE.ORG - AI FOR OCEANS

AI FOR OCEANS

- Al for Oceans
- How can we help protect the oceans using ML?

AI FOR OCEANS

AI FOR OCEANS

- How do Al know what a "fish" may look like?
- Why did we need to label and distinguish different objects in "Al for Oceans" activity (e.g., "fish" versus "not fish")? How do you call this step?
- How important this step was for machine learning?

2. NATURAL LANGUAGE PROCESSING

WHAT IS NATURAL LANGUAGE PROCESSING (NLP)?

• NLP is the branch of Al that helps computers detect, understand, interpret, and manipulate human language in ways that are context aware.

HOW DOES NLP WORK?

- Different forms of analysis based on...
 - O Data (example: words)
 - O Structures (example: grammar)
 - Meaning
- What does it mean?
 - "It's only 68 degrees in here"

HOW DOES NLP WORK?

- Language is Data.
- Word association
 - the relationship between sentences, words or signs and their meaning

TRY TO BUILD YOUR WORD ASSOCIATION MAP

- Talk about your target word and the different meanings
- After you receive your word, begin building your word association map
- Make a cluster:
 - Draw lines to link words together if they are related
- Border your clusters:
 - When you are finished, draw a shape around clusters that are not related to other clusters

HOW DOES NLP WORK?

- Each cluster has a boundary
- Each boundary has been defined by us
- Boundaries can change. But...how?
 - Context (restaurant versus school cafeteria)
 - Location (school versus home)
 - Culture (Korea versus US)
 - Trends (1990 versus 2023)
 - Audience (middle schooler versus old timer)

[Fun fact: this is how algorithms are made!]

HOW DOES NLP WORK?

[some] techniques to train a model

- O Cluster analysis
- Keyword extraction
- Sentiment analysis

[some] uses of the models we trained

- Make Word Predictions to Gene rate Text Responses (ChatGPT; autocomplete)
- Determine Meanings of Text (lan guage translation)

HOW DOES AUTOCOMPLETE WORK ON DIFFERENT USERS?

how to make

how to make money

how to make friends

how to make water run uphill

how to make a decision

how to make a questionnaire

how to make our ideas clear

how to make telehealth app

how to make strategic alliances work

how to make soap

how to make a good presentation

Q how to make

A how to make - Google Search

A how to make kelly green

A how to make a paper airplane

A how to make kelly green icing

A how to make money

A how to make kelly green frosting

A how to make

how to make french toast

Q how to make a paper airplane

A how to make buttermilk

A how to make slime

how to make money fast

A how to make money online

how to make deviled eggs

WHAT'S THE ALGORITHM PAYING ATTENTION TO?

- Google profile
- Social media activity
- Recent searches
- Search history
- Location / zip code
- Date / time
- Other immediate searches in your proximity
- Browser cookies
- Other....?

2. COMPUTER VISION

WHAT IS COMPUTER VISION (CV)?

- It is used to know what an image contains.
- The goal of CV is to understand the content of digital images by extracting useful/ meaningful information from the image.

WHAT IS USEFUL/MEANINGFUL DATA?

CV might be used to classify, identify, verify, detect, and/or recognize objects in an image.

UNDERSTANDING IMAGES IS NOT TRIVIAL

- Images contain a lot of data!
- The problem for computers is that data is not easily transformed into something they can understand.
 Computers don't see colors and shapes.

THE PROBLEM OF UNDERSTANDING IMAGES

To address the problem of a computer extracting meaningful information from an image, the problem was decomposed into smaller more manageable problems:

- Pixel/Color Identification
- Edge Detection
- Shape Detection

PIXEL/COLOR IDENTIFICATION

What would happen if computers could look at pictures? - Russell Kirsch

EXPLORE THE PIXEL ACTIVITY PROGRAM

R G B	9 54 106	R G B	82 110 156	R G B	40 50 54	R G B	9 11 24	R G B	36 51 53	R G B	65 81 74	R G B	27 34 39	RGB	47 82 140	R G B	181 196 230	RGB	215 222 226		109 118 97	R G B	9 12 13	R G B	4 15 28
R G B	22 42 25	RGB	6 30 80		109 143 203	2 G B	188 198 224	RGB	163	民の田		RGB		RUB	10 24 18	RGB	6 13 27	RGB	8 26 47		28 58 106				54 62 63
G	143 164 172	R G 89	186		92 95 74	RGB	2 8 28	R G B	18 45 87		83 116 151			RGB	25 18 22	R G B	7 22 35	RGB	0 14 34	RGB	14 35 47	RGB	12 23 38		25 63 119
R G B	66 80 109	R G B	21 14 16		38 52 58			R G B		RGB	5 27 67			M U B	187 206 229	R (6) III	176 202 192	RGB	21 25 11	RGB	0 13 20	RGB	14 6 28	R G B	22 11 29
R G B	24 46 82		53 66 104			R G B	15 21 22		12 10 13	R G B	50 58 49			RGB	0 11 27	R G B	0 32 62		32 67 105			R G B	16 21 20	R G B	25 30 42
		RGB	4 9 15	R G B	0 22 44	RGB	20 53 83			R G B	9 22 30	R G B	13 18 30	RGB	18 24 42	RGB	2 20 35	RGB	29 41 54		27 63 114		75 114 164		157 166 189
R G B	17 24 33			RGB	41 35 34	RGB	1 15 16		0 40 81		105 135 182					RGB		RGB		RGB	0 20 36	R G B			38 50 70
		R G B	33 42 37	R G B		RGB	29 39 45		49 59 43	RGB	4 17 23	RGB	17 38 63				52 58 63	RGB		RGB	2 31 43	RGB	20 58 94		
R G B	23 52 80					R G B	22 23 25	R G B	22 18 33	RGB		RGB	14 34 53	R G B	10 20 33			R G B	72 95 112	RGB	24 40 36	R G B	0 15 25	R G B	

EDGE DETECTION - UNPLUGGED

- Here are the pixel values for a gray-scale image.
- What do you think is in the image?

EDGE DETECTION - UNPLUGGED

A Star

SHAPE DETECTION – WHAT DO YOU SEE?

EDGE DETECTION TO SHAPE DETECTION

Google Quick Draw

DISCUSSION QUESTIONS

- How can we connect CS with Al?
- Do you think that collecting more data always leads to better decisions? Why or why not?
- How can poor quality data affect Al?
- How can we ensure that the data we collect is accurate and reliable?